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In this paper, a high-order finite volume method is employed to solve the local energy
approximation model equations for a radio-frequency plasma discharge in a one-dimen-
sional geometry. The so called deferred correction technique, along with high-order
Lagrange polynomials, is used to calculate the convection and diffusion fluxes. Temporal
discretization is performed using backward difference schemes of first and second orders.
Extensive numerical experiments are carried out to evaluate the order and level of accu-
racy as well as computational efficiency of the various methods implemented in the work.
These tests exhibit global convergence rate of up to fourth order for the spatial error, and of
up to second order for the temporal error.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Over the past few decades, considerable effort has been devoted to modeling non-thermal RF plasma discharges typical of
those used in plasma processing of microelectronics devices [1] as well as coating of submicron-sized particles [2]. The
deterministic continuum approach has proved to be computationally efficient in resolving various disparate length and time
scales involved in the process. Gogolides and Sawin [3] have presented fundamental assumptions and a detailed derivation
of the so called ‘local energy approximation model’ equations from the first three moments of the Boltzmann equation. In
such a second-order hydrodynamic model [4–8,3,9–20], the electron energy is conserved, and the ionization rate coefficient
is an empirical function of the local mean electron energy. This is particularly useful in the simulation of plasma flows where
full chemistry of the carrier gas is considered (see [17,21,20,22]). The first-order ‘local field approximation model’ [23–37],
on the other hand, is characterized by dependence of ionization on electric field. In this model, Townsend’s first ionization
coefficient is described by empirical expressions for the noble background gases [38].

RF and DC plasmas have been simulated with a variety of spatial discretization methods. These include first-order upwind
[26,39,10,35,36], central difference [40], Scharfetter–Gummel [24,25,12,41,16,17,21] finite difference schemes, and the finite
element method [4–6,11]. Spectral methods are promoted as more appropriate and include a spectral element [42] and a
Chebyshev-collocation spectral (with single domain) scheme [19].

Balance equations for variables within a finite volume framework are naturally conservative and have simple physical
interpretation. The goal of the present study comprises implementation of a semi-implicit, high-order finite volume method
in solving the local mean energy model equations, and comparison of the accuracy and performance of various spatial and
temporal methods within this framework. To the best of the authors knowledge, there is no report in the literature on this
issue to date.
. All rights reserved.
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We use the deferred correction method [43,44] to discretize the diffusion and electrical convection terms. In this ap-
proach, to keep the size of the computational molecule small, a low-order method is used to implicitly discretize the fluxes,
while the difference between the explicitly computed high- and low-order flux approximation is added as a source term. At
convergence of the solution for the transport equation, the low-order approximation terms drop out and the high-order solu-
tion is retrieved. As the low-order implicit scheme, we employ first-order upwind (or central difference) for the electrical
convective flux and central difference for the diffusive flux. Various explicit high-order fluxes are calculated from Lagrange
polynomials. The gradient fields are also defined using a range of accuracy orders, and spatial integrations are performed
using a fourth-order approximation. Boundary conditions are treated with up to fourth-order accuracy. Here, we restrict
our geometry to a Cartesian one-dimensional infinite parallel plate. Our long term aim, however, is to use this ‘benchmark-
ing’ study to produce a code that can both efficiently and accurately simulate RF plasma physics in three-dimensional com-
plex geometries. In doing so, we will systematically examine the numerical treatment of different terms in the transport
equations and establish the viability and the accuracy of our method against more sophisticated spectral methods, since
it is suggested that the accurate solution of the local mean energy model equations requires very high-order spatial descr-
itization [42,40].

It is noted here that under the same operating conditions and parameters and as long as the machine accuracy or the
computational time is not an obstacle, all of the above-mentioned numerical strategies give the same solution at mesh con-
vergence, regardless of the numerical treatment of convection, diffusion, and temporal ‘flux’, and the way in which the gra-
dient fields or spatial integrations are estimated. However, as will be discussed later, the rate of convergence to a mesh
independent solution is dependent upon the spatial flux scheme order and spatial descritization, and also temporal flux or-
der and temporal descritization, whose performance we feel has not been given sufficient prominence in the literature.

2. Plasma model equations and non-dimensionalization

The local mean energy approximation model in dimensional form consists of the following set of conservation equations
[4,11,12,16]:
on�i;e
ot�
þ ~r� � ~C�i;e ¼ k�i n�en�n; ð1Þ

ox�e
ot�
þ ~r� � ~C�xe

¼ �e~C�e �~E� � k�i n�en�nH�i ; ð2Þ

r�2/� ¼ e
�0
ðn�e � n�i Þ; ð3Þ
where the flux expressions are defined as,

~C�i ¼ þl�i~E

�n�i � D�i ~r�n�i ; ð4Þ
~C�e ¼ �l�e~E

�n�e � D�e~r�n�e; ð5Þ

~C�xe
¼ 5

3
�l�e~E

�x�e � D�e~r�x�e
� �

; ð6Þ
and other subsidiary equation being,
~E� ¼ �~r�/�: ð7Þ
In the above set of equations, n�i;e refers to ion, electron number density, and x�e denotes mean electron energy density. ~C�i;e
represents ion, electron fluxes, and ~C�xe

indicates mean electron energy density flux. k�i is the ionization rate coefficient, while
H�i designates ionization energy. n�n ¼ P=kBTn gives the neutral number density, with P, kB, and Tn denoting the reactor pres-
sure, Boltzmann constant, and neutral species temperature, respectively. The electric potential is represented by /� and the
electric field by ~E�. The elementary charge is shown by e, and �0 is permittivity of free space. Finally, l�e;i and D�e;i represent
electron, ion mobility and diffusion coefficients, respectively.

We consider a parallel plate RF glow discharge plasma reactor as shown in Fig. 1. Thus, for our one-dimensional case,
~r� � d=dx�, ~C�i;e � ~C�xi;e

� C�i;e, r�2 � d2
=dx�2, and ~E� � E�x ¼ E�. The values of transport coefficients and various parameters

of the argon discharge used in the present simulations are tabulated in Table 1. We use x0, /0, and l0 as the characteristic
dimensional scales for length, voltage, and mobility, respectively. Noting that ion and electron mobility and diffusion coef-
ficients are constant, the following dimensional scales, generically denoted by u0, are then derived as:
n0 ¼
�0/0

ex2
0

; D0 ¼ l0/0

x0 ¼ e/0n0; t0 ¼
x2

0

D0

Hi0 ¼ x0n0; ki0 ¼
1

n0t0

E0 ¼
/0

x0
; f 0 ¼

1
t0
:



Fig. 1. Schematic of the problem.

Table 1
Transport coefficients and parameters used in the simulations, from Refs. [12,19].

Parameter Value

l�eP 30.0
m2

Vs
torr

� �

D�eP 120.0
m2

s
torr

� �

l�i P 0.14
m2

Vs
torr

� �

D�i P 4:0� 10�3 m2

s
torr

� �

k�i

0
x�e
en�e
6 5:3 eV

8:7� 10�15 x�e
en�e
� 5:3

� �
expð�4:9=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�e
en�e
� 5:3

s
Þ ðm

3

s
Þ x�e

en�e
> 5:3eV

8>>><
>>>:

H�i 15.578 � e (J)
f � 13.56 (MHz)
L 0.02 (m)
P 1 (torr)
Ti ¼ Tn 293 (K)
/rf 40 (V)
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For any dimensional variable, u�, its non-dimensional counterpart is defined as u ¼ u�=u0, and this leads to the following
non-dimensional equations, valid also for DC plasma discharges:
Table 2
Bounda

Bounda

x ¼ 0

x ¼ 1
oni

ot
þ li

o

ox
ðEniÞ ¼ Di

o2ni

ox2 þ kinenn; ð8Þ

one

ot
� le

o

ox
ðEneÞ ¼ De

o2ne

ox2 þ kinenn; ð9Þ

oxe

ot
� 5

3
le

o

ox
ðExeÞ ¼

5
3

De
o2xe

ox2 þ leneE2 þ DeE
one

ox
� kinennHi; ð10Þ

0 ¼ o2/
ox2 þ ðni � neÞ; ð11Þ

E ¼ � o/
ox
: ð12Þ
Eqs. (8)–(10) form a set of three convection–diffusion transport differential equations, while Eq. (12) couples them to Pois-
son’s Eq. (11) for electric potential. We choose the characteristic scales x0 ¼ L, the inter-electrode gap, /0 ¼ /rf , the ampli-
tude of the applied RF voltage with excitation frequency f �, and l0 ¼ l�e.

Although more realistic boundary conditions like those in [37,45] can be readily implemented, we use the conditions of
Table 2 for the sake of direct comparison of our results with those of Lin and Adomaitis [19].
ry conditions on primary variables.

ry Condition on ni Condition on ne Condition on xe Condition on /

@ni

@x
¼ 0 ne ¼ 0 xe ¼ 0 / ¼ 0

oni

ox
¼ 0 ne ¼ 0 xe ¼ 0 / ¼ sinð2pftÞ
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3. Notes concerning the finite volume method implementation

Take as an example the non-dimensional ion transport equation which has the following integral form:
Z
X

oni

ot
dXþ li

I
S

EnidS ¼ Di

I
S

oni

ox
dSþ

Z
X

kinenndX; ð13Þ
where X denotes the volume of the control volume (CV), and S is the surface enclosing the CV. To perform the integration of
the temporal and the source terms over a CV, P in Fig. 2, we first pass a quadratic polynomial, as the shape function assumed
within the CV, through the center points W , P, and E. Then, we integrate the resulting polynomial from the west to the east
face of the CV. Such an approximation is of fourth-order accuracy, whereas the conventional mid-point rule possesses an
accuracy of second-order [44]. The electrical convection term, in the context of the finite volume method, requires specific
mention. In order to create a linearized algebraic tridiagonal equation set, with a matrix structure of the form
ðAW þ AEÞnijP ¼ APnijP ¼ AW nijW þ AEnijE þ QP ; ð14Þ
we make use of the Poisson equation in the integral form,
I
S

EdS ¼
Z

X
ðni � neÞdX; ð15Þ
as a continuity equation. Such a matrix structure, with AP equal to sum of all neighbor coefficients and AE;AW P 0, charac-
terizes all conservative schemes, ensuring that a uniform field satisfies the discretized homogeneous equation. Moreover, it
enhances the diagonal dominance of the matrix A. Multiplying the above equation by lini, and subtracting the result from Eq.
(13) gives
Z

X

oni

ot
dXþ li

I
S

EnidS� lini

I
S

EdS ¼ Di

I
S

oni

ox
dSþ

Z
X

kinenndXþ lini

Z
X
ðne � niÞdX: ð16Þ
Using compass notation as defined in Fig. 2, the discrete approximation to the convection related terms in the above
equation is
�lini

I
S

EdSþ li

I
S

EnidS� lini

Z
X
ðne � niÞdX ’ ðFjw � FjeÞnijP � Fjwnijw þ Fjenije � linijP

Z
X
ðne � niÞdX; ð17Þ
where Fjw and Fje at the west and the east cell faces are defined, respectively, as
Fjw ¼ liðSEÞjw; Fje ¼ liðSEÞje;
with S denoting the cell surface area.
The face coefficients (Fje and Fjw) in Eq. (17) are computed by interpolating the cell center electric field values with a

method that is consistent in order with that used to estimate the face values of the ion density field ðnijw;nijeÞ with the min-
imum method order being two (central differencing). First term in the right-hand side (rhs) of Eq. (17) now resembles APnijP
term in Eq. (14), and the face nijw;nije terms in Eq. (17) will be related to the nodal values (i.e. nijP , nijE, nijW of Eq. (14)) via
some form of convection scheme. It is noted that the extra non-linear source term, i.e. the last term in the rhs of Eq. (17), may
be linearized and added to the Ap coefficient thus improving the diagonal dominance of the matrix and the stability of the
global algebraic numerical method.

The above technique is similarly applied in defining implicit convection coefficients and the required additional source
terms for the other variables, i.e. ne and xe.

High-order approximation of convective or diffusive fluxes is achieved using the deferred correction technique [43,44].
Taking as an example the ion density electrical convective flux, on the east face of a CV, P, we define the convective flux gen-
erally as
Fjenije ¼ liðSEÞjenije � liðSEÞjefn
ðiÞ
i je þ ðn

ðhÞ
i je � nðlÞi jeÞg; ð18Þ
where nðiÞi je is the implicit component and ðnðhÞi je � nðlÞi jeÞ is an explicit ‘deferred’ correction, added to the flux term such that at
convergence the net flux is that of the high-order scheme. Fluxes of order higher than two at the cell face are calculated using
Lagrange polynomials [Eq. (19) in Appendix I] based on variable values at the nodes located on both sides of the cell. Close to
the boundaries, the number of nodes on the left and the right are varied accordingly. Specific forms of nðiÞi je and ðnðhÞi je � nðlÞi jeÞ
are defined in Appendix I.
W W W
W eP E EE

Fig. 2. Typical one-dimensional finite volume non-uniform mesh with compass notation.



Table 3
Temporal discretization schemes employed in the present study.

Order oni

ot

1st nnþ1
i � nn

i

Dt

2nd
3nnþ1

i � 4nn
i þ nn�1

i

2Dt
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The diffusion fluxes are also evaluated using the same deferred correction approach,
oni

ox

����
e

¼ oni

ox

� �ðiÞ�����
e

þ oni

ox

� �ðhÞ�����
e

� oni

ox

� �ðlÞ�����
e

( )
:

Here, the implicit component is approximated by a second-order central difference approximation
@ni

@x

� �ðiÞ�����
e

¼ nijE � nijP
xjE � xjP

;

and the explicit term represents the difference between the explicit version of @ni
@x

� 	ðiÞje and a higher-order differentiated La-
grange polynomial (Eq. (19) in Appendix I).

We also note that the gradient fields of all variables, particularly important for some of the source terms, may also be
estimated using the same high-order gradient estimator. Furthermore, all the source terms are treated semi-implicitly
and calculated based on the values of the variables and their gradients computed in the last internal iteration. Moreover,
as demonstrated in Table 3, temporal discretization utilizes a first- or second-order backward difference scheme. Finally,
boundary conditions with accuracy of up to fourth-order are implemented using one-sided difference methods. It is stressed
that since arbitrarily high-order convection, diffusion, and gradient terms are already implemented in our code, higher or-
ders than four in space are attainable by employing higher order spatial integration schemes (for the temporal and source
terms), and higher order boundary conditions.

Discretization of the integral form of the system of Eqs. (8)–(11) leads to a system of coupled algebraic equations for the
discrete variables defined at the cell centers. At each time step, these coupled equations are solved iteratively until the max-
imum (both in space and among the variables) error becomes less than a tolerance of 10�8:
max
juk

i �uk�1
i j

1þ juk
i j

( )
< 10�8; 1 6 i 6 NCV;
where superscripts k and k� 1 denote the values of the generic variable u at the current and previous iterations, respec-
tively. Inside each inter-equation iteration, the low-cost Thomas algorithm [44] is used to solve tridiagonal system of the
equations. Different initial conditions proved to give the same results. However, to perform an appropriate error analysis,
all the test cases start from the same uniform initial condition for t 6 0, with ni ¼ ne ¼ 5� 1015=n0 and xe ¼ 5� 1015 � e=x0.

4. Results and discussion

4.1. Overview of simulations and the test matrix

As mentioned in the introduction, the objective of the present study is to compare the accuracy and performance of the
schemes treating the various terms involved in the local mean energy model equations. Parameters involved in such a study
consist of spatial resolution (NCV, total number of control volumes in the domain), temporal resolution (Nts, number of time
steps per RF cycle), time flux (tfds), convection flux (cfds), diffusion flux (dfds), and gradient field (gfds) discretization
schemes. Types of convection schemes (cfds) are denoted as U (first-order upwind), CD (second-order central difference),
and TVD (Superbee Total Variation Diminishing flux limiter [46]). In all these cases, interpolation of the cell center electric
field to the cell face in order to calculate the cell face flux coefficients is performed using a second-order central difference.
Where the index is numeric, this represents the order of the Lagrange polynomial used to interpolate node values to the face.
For the diffusion flux (dfds) and the gradient field (gfds) numerical methods, the numerical index represents the order of the
original Lagrange polynomial differentiated if dfds or gfds are greater than 2, otherwise pure implicit central differencing.
The order of accuracy of the one-sided finite difference schemes through which the boundary conditions are approximated
correspond to the index indicated by dfds and gfds.

Considering the six-dimensional parameter space, we define a test matrix comprising 27 tests as tabulated in Table 4.
Tests 1–3, 4–6, 7–9, 10–12, 13–16, 17–19 investigate the effect of uniform mesh resolution and spatial scheme choice,
whereas tests 20–22, and 23–26 concern with the effect of temporal resolution and scheme order for a highly resolved spa-
tial domain. For all of the cases, errors of the instantaneous primary variables are calculated at the time point corresponding
to the three quarters of the 250th cycle. For a generic variable u, the following ‘1-norm of the relative error is used as a mea-
sure of accuracy:



Table 4
Spatial resolution ðNCVÞ, temporal resolution ðNtsÞ, numerical scheme, total CPU time (tct), last cycle CPU time (lct) and accuracy of test cases. tfds, cfds, dfds,
and gfds denote time flux, convection flux, diffusion flux, and gradient field discretization schemes, respectively.

Case no. NCV Nts tfds cfds dfds gfds tct (s) lct (s) fni
fne

fxe
f/

1 200 80 2 U 1 1 815.0 3.5 1.28E�01 1.36E�01 1.35E�01 5.02E�01
2 400 80 2 U 1 1 1632.7 7.1 7.06E�02 7.33E�02 7.34E�02 1.18E�01
3 800 80 2 U 1 1 3303.9 14.5 3.90E�02 4.03E�02 4.03E�02 4.29E�02
4 200 80 2 CD 2 2 803.6 3.4 1.70E�01 1.76E�01 1.76E�01 3.25E�01
5 400 80 2 CD 2 2 1692.5 7.4 2.65E�02 2.75E�02 2.76E�02 5.16E�02
6 800 80 2 CD 2 2 3415.6 15.0 6.29E�03 6.53E�03 6.54E�03 1.19E�02
7 200 80 2 TVD 2 2 1013.8 4.3 1.74E�01 1.80E�01 1.80E�01 3.23E�01
8 400 80 2 TVD 2 2 2138.5 9.4 2.91E�02 3.01E�02 3.02E�02 5.21E�02
9 800 80 2 TVD 2 2 4320.6 19.0 7.02E�03 7.28E�03 7.29E�03 1.21E�02
10 200 80 2 U3 3 3 1214.6 5.4 1.07E�03 1.08E�03 1.08E�03 8.31E�04
11 400 80 2 U3 3 3 2403.4 10.5 9.00E�05 8.47E�05 8.71E�05 7.94E�05
12 800 80 2 U3 3 3 4801.8 21.1 1.11E�05 9.86E�06 1.02E�05 8.46E�06
13 200 80 2 U5 4 4 1252.4 5.5 2.34E�04 2.31E�04 2.28E�04 2.79E�04
14 400 80 2 U5 4 4 2478.7 10.9 1.42E�05 1.09E�05 1.07E�05 1.66E�05
15 800 80 2 U5 4 4 4953.5 21.7 1.29E�06 5.33E�07 5.27E�07 1.00E�06
16 6400 80 2 U5 4 4 39594.3 173.9
17 200 80 2 CD5 4 4 1251.4 5.5 2.34E�04 2.31E�04 2.28E�04 2.79E�04
18 400 80 2 CD5 4 4 2479.7 10.8 1.42E�05 1.09E�05 1.07E�05 1.66E�05
19 800 80 2 CD5 4 4 4944.4 21.6 1.30E�06 5.38E�07 5.33E�07 1.00E�06
20 3200 40 1 U5 4 4 24833.5 111.5 4.65E�02 4.74E�02 4.82E�02 7.78E�03
21 3200 80 1 U5 4 4 26689.6 118.9 2.37E�02 2.42E�02 2.46E�02 4.00E�03
22 3200 160 1 U5 4 4 29586.5 129.2 1.20E�02 1.22E�02 1.24E�02 2.02E�03
23 3200 40 2 U5 4 4 18053.6 80.5 1.21E�02 1.24E�02 1.25E�02 1.37E�03
24 3200 80 2 U5 4 4 19736.7 86.8 2.90E�03 2.96E�03 2.99E�03 3.42E�04
25 3200 160 2 U5 4 4 22678.7 97.7 6.64E�04 6.78E�04 6.85E�04 7.90E�05
26 3200 640 2 U5 4 4 36807.5 152.7
27 6400 640 2 U5 4 4 73862.5 305.4
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Fig. 3. Comparison of the quasi-steady-state results of the present study (solid lines and left vertical axes) with those of references [19] (symbols and right
vertical axes) and [47] (symbols and left vertical axes). Spatial distribution of (a) ions concentration, (b) mean electron energy, (c) ionization rate, and (d)
electric field at different times in the last RF cycle.
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fu ¼
PNCV

i¼1 juexact
i �uijPNCV

i¼1 juexact
i j

;

where the prediction from tests 16 and 26 are deemed to be the spatially and temporally ‘exact’ solutions, respectively. Table
4 summarizes the accuracy and CPU time of these simulations which are performed on an L5310@1.60 GHz Intel Xeon CPU.
‘‘tct” therein reports the CPU time (in seconds) of the whole simulation from the first up to the 250th cycle, whereas ‘‘lct”
represents the time (in seconds) taken to compute only the last RF cycle.

4.2. Comparisons with previous results

In Fig. 3, the results generated by setting NCV ¼ 6400, Nts ¼ 640, tfds = 2, cfds = U5, dfds = 4, and gfds = 4 (corresponding to
case 27 in Table 4) are compared with those of references [19] and [47]. These parameters amount to our most highly re-
solved case in terms of spatial scheme order and resolution, and also temporal scheme order and resolution. Convergence
of the whole system to the periodic, quasi-steady-state solution is ascertained to have been reached by running the simu-
lation for 2000 cycles. At this stage, the relative difference in ni at the central node, between two consecutive periods, at a
quarter of the cycle is less than 10�6. In comparison with the results of Lin and Adomaitis [19], relatively good qualitative
agreement is observed in most of the x domain for all primary variables at the two times shown. Quantitatively, however,
the peak number densities of ions (and electrons) in the results of Lin and Adomaitis lie �50% higher as compared to those in
our simulations. On the other hand, our results demonstrate excellent agreement, both quantitatively and qualitatively,
when compared to those generated by Goedheer and coworkers [12,47] using the same parameters and conditions. It is
emphasized that prior to this study, we implemented a finite difference method [36] where various convection discretization
schemes such as first-order upwind, second-order upwind [48], central difference, and Scharfetter–Gummel along with cen-
tral differencing for diffusion flux and backward Euler for temporal integration were employed. All of these methods pre-
dicted ni and ne which fall within 5% of the presented results of the current study.

Fig. 4 shows the general space-time character of the system. The powered electrode at x�=L ¼ 1 defines the voltage sine
wave where / = 40 V at t�=T ¼ 0:25. The ion density is not shown, but it is well-known that at a frequency of 13.56 MHz due
to ions large mass per unit charge, this field is almost completely independent of time [24,36] and our results confirm this.
The electron density and electron energy density fields (Fig. 4(a) and (b)) do have a small time as well as a space dependence.
The quasi-steady-state results corresponding to case 27 of the test matrix shown in Table 4. Space-time contours of (a) electron number density, (b)
lectron energy density, (c) electric potential, and (d) ionization rate coefficient.
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However as Fig. 4(d) reveals, it is the variation of the ionization rate coefficient in space and time that is most striking, and
where high spatial and temporal accuracy in the local x � t space is most important.

4.3. Performance and accuracy

The accuracy versus cost of the choice of spatial scheme type may be assessed by comparing the errors of tests 2, 5, 8, 11,
14, 18, where NCV ¼ 400, Nts ¼ 80, and tfds = 2. The global scheme order rises from �1 (test 2), �2 (tests 5 and 8), to �3 (test
11), and finally �4 (tests 14 and 18). We observe a reduction in the magnitude of the error by more than three orders of
magnitude for an increase in the total CPU time of �50%. We can conclude from this that the deferred correction method,
for higher order flux approximations is an efficient and robust method to obtain accurate solutions to RF plasma problems.
In addition, with Nts, tfds, cfds, dfds, and gfds kept constant (see cases 1–3, 4–6, 10–12, or 13–15 for instance), CPU time ap-
pears to be almost linearly proportional to the spatial resolution ðNCVÞ with a proportionality factor of �1 (see also Fig. 5(e)
and (f)).

Fig. 5(a)–(d) depicts as a function of NCV the ‘1-norm of relative errors for various spatial schemes with a fixed time
scheme (second-order) and time step size ðNts ¼ 80Þ. In these plots, the order of accuracy of each scheme is denoted by
the corresponding numerical legend, and is calculated as the negative of the slope of the line curve-fitted through points
ðf;NCVÞ. We show that the magnitude and order of the global error in all primary variables is controlled by the spatial scheme
choice and mesh resolution, as defined by tests 1–19 of Table 4. It is also noteworthy in Fig. 5(a)–(d) that upwinding with 200
uniform cells results in fni

¼ 12:8% and fne ¼ 13:6% which correspond to an error in the maximum densities at the 250th
cycle by as much as 8.5%. This figure suggests that to reach an accuracy of 10�4, over �750,000, 4800, 400, and 240 uniform
cells are required when employing U, CD, U3, and U5/CD5, respectively. Corresponding CPU time for one cycle of such sim-
ulations would be over � 13,000, 90, 10, and 6 s.
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Fig. 5. (a)–(d) ‘1-norm of spatial relative errors, (e) last cycle CPU time (lct), and (f) total CPU time (tct) as a function of NCV for various spatial schemes with
tfds = 2 and Nts ¼ 80. Results are extracted at three quarters of the 250th cycle.
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Fig. 5(e) and (f) shows, respectively, the last cycle CPU time (lct) and total CPU time (tct) for various spatial resolutions
ðNCVÞ and discretization schemes. In these figures we observe that there is a considerable difference between the CPU times
of U and CD, and those of U3 and U5. This trend is most likely because neither upwinding nor central differencing uses the
deferred correction technique, whereas both U3 and U5 employ this technique in discretizing the convection and diffusion
terms. CPU times of TVD scheme which uses deferred correction in only the convection term falls between the U/CD and U3/
U5 cases. It is also remarkable that while cases 13–15 are only slightly slower than cases 10–12, cases 13–15 clearly exhibit
significantly higher levels of accuracy.

As mentioned previously, in all of the cases, the spatial integration of the transient and volume source terms are per-
formed using a fourth-order method. However, as apparent in Fig. 5(a)–(d), using lower order methods to interpolate the
convective or diffusive fluxes, or to approximate the gradients or the boundary conditions yields a lower order error trend.
Higher order trends of the global error are achieved when consistently applying higher order approximations to the various
spatial terms. Moreover, we observe that the central difference and the Superbee TVD (a blended first-order upwind/second-
order scheme) produce somewhat identical results in terms of the error trend and also the error magnitudes. This implies
that the convected fields are all reasonably smooth and do not require the TVD limiter to activate. Among the various spatial
schemes examined, the errors are minimal in magnitude and maximal in order in the case of the deferred correction with
cfds = U5/CD5, dfds = 4, gfds = 4. Further, comparing tests 13–15 with 17–19 of Table 4 reveals that using central differencing
instead of upwinding as the implicit convection flux discretizer has literally no effect on the global accuracy. Therefore, we
confirm the deferred correction method provides a stable and accurate numerical method for finite volume/difference meth-
ods for RF plasmas and can produce significant savings on CPU time by using pre-computed interpolation polynomials.

Fig. 6(a)–(d) depicts the role of the time scheme order and the time step size, as defined by tests 20–26 of Table 4 upon
the global accuracy. As with the spatial schemes, we observe with the temporal scheme a first-order global error trend for
the first-order scheme and a second-order error trend for the second-order time scheme. This is somewhat surprising for the
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with cfds = U5, dfds = 4, gfds = 4, and NCV ¼ 3200. Results are extracted at three quarters of the 250th cycle.



Table 5
Total number of inter-equation iterations ðNiterÞ in the last cycle for various temporal flux discretization schemes (tfds) and number of time steps per cycle ðNtsÞ.

Case no. tfds Nts Niter Case no. tfds Nts Niter

20 1 40 4309 23 2 40 3061
21 1 80 4566 24 2 80 3302
22 1 160 4992 25 2 160 3713
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voltage field, since no transient term exists in the Poisson equation, and implies that the equation is dominated by the ion
and electron density source terms (whose fields are controlled by transient and convective transport). It is also noted the
significantly increased accuracy the second-order scheme provides and this suggests two possibilities. First that further in-
crease in time scheme order may bring further benefits in terms of accuracy and second that the use of higher order time
scheme can bring significant CPU time savings by reducing the number of time steps required to resolve one RF cycle. For
example, one to one comparison of tests 22 (with tfds = 1 and Nts ¼ 160) and 25 (with tfds = 2 and Nts ¼ 160) of Table 4 re-
veals that using a second-order time scheme leads to a decrease by 25% in CPU time and an increase by 18 times in level of
temporal accuracy. Table 5 lists the total number of inter-equation iterations ðNiterÞ in the last cycle for various temporal flux
discretization schemes (tfds) and number of time steps per cycle ðNtsÞ. According to this table, in order to reach a value of
10�8 in the maximum change of variables between two consecutive iterations, case 22 requires 4992 iterations among
the equations, whereas this number for case 25 is 3713 (�25% less). This reduction in computational time per time step
is also confirmed by Fig. 6(e) and (f) which demonstrates that with the same number of time steps, the second-order time
scheme is generally much less time consuming than its first-order counterpart. Last but not least, with tfds being fixed in
cases 20–22, or 23–25, doubling the number of time steps results in less than 15% increase in CPU time. Examination of Table
5 again proves that the issue of coupling between the equations contributes to such a favorable non-linearity, which can also
be observed in Fig. 6(e) and (f).

5. Conclusions

A low-cost highly accurate finite volume method was implemented to solve the local mean energy model of non-equi-
librium plasmas in a one-dimensional RF configuration. From our numerical experimentations it became apparent that con-
sistent high-order treatment of convection and diffusion fluxes, gradients, boundary conditions and volume integrations is
critical in obtaining higher orders of global accuracy, and thus faster rate of convergence to mesh independence and lower
computational cost. According to our temporal error analysis, increasing the scheme order for the temporal term results in
drastic enhancement of level of accuracy per unit CPU time, and dramatic decrease of CPU time per time step. In brief, when
using second-order time scheme in conjunction with fourth-order spatial schemes, lower temporal and spatial resolution,
and hence less CPU time, are required to achieve a certain level of accuracy.

Our code is developed for non-uniform meshes and by employing non-orthogonal meshes has the ability to handle two-
and three-dimensional problems with realistic complex geometries such as those used in PECVD processes. In such a case,
the presented technique with only a moderately high-order correction of the fluxes can overcome the prohibitive cost of
lower order computations. Obviously, when the mesh is non-orthogonal, additional interpolation operations are required
since points of interpolation polynomials are no longer on mesh lines. Acceleration of the computations becomes crucial also
in the problems where chemical reactions are taken into account, or in two-way coupling of dense particle phase with the
plasma phase in a particle-laden plasma flow.
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Appendix I. Various numerical schemes used in this study to evaluate ni on the east or west cell faces of a CV, P in Fig. 2,
are as follows:

1. First-order upstream approximation,
nðiÞi je ¼
nijP Eje P 0
nijE Eje < 0




nðhÞi je � nðlÞi je ¼ 0
2. Second-order central difference approximation,
nðiÞi

���
e
¼ xE � xe

xE � xP
ni

����
P

þ xe � xP

xE � xP
ni

����
E

nðhÞi

���
e
� nðlÞi

���
e
¼ 0
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3. Following the flux limiter approach for constructing high-order Total Variation Diminishing (TVD) scheme [46], where
the low-order flux is taken to have the form of monotone, first-order upwinding, and the high-order flux to be sec-
ond-order central differencing, for a non-uniform grid one obtains
nðiÞi je ¼
nijP Eje P 0
nijE Eje < 0




nðhÞi je � nðlÞi je ¼
wðrþe Þ

xe�xP
xE�xP
ðnijE � nijPÞ Eje P 0

wðr�e Þ
xe�xE
xE�xP
ðnijE � nijPÞ Eje < 0

(
:

Thus, TVD schemes use upwinding for calculation of the implicit component of the flux [nðiÞi je in Eq. (18)], in conjunction
with a limited slope as the explicit component. This implies second-order accuracy in smooth regions (i.e. where the ratio
re is close to unity). In non-smooth regions, the limiter function is normally designed in such a way to adaptively reduce
the influence of the higher-order terms so that the scheme remains conservative. Unfortunately, this increases the first-
order upwind contribution, and hence also the numerical dissipation of the gradient. re is the ratio of the consecutive gra-
dients in the upstream over the local (at face e) directions, defined as [46],

rþe ¼
ðnijP � nijW Þ=ðxP � xWÞ
ðnijE � nijPÞ=ðxE � xPÞ

Eje P 0

r�e ¼
ðnijE � nijEEÞ=ðxE � xEEÞ
ðnijP � nijEÞ=ðxP � xEÞ

Eje < 0

Among the various forms of the limiter function wðreÞ, we selected Superbee [49] which applies the minimum limiting
and maximum steepening possible to remain TVD,

wðreÞ ¼max½0;minð1;2reÞ;minð2; reÞ	:

4. Convection schemes of order greater than 2 use deferred correction method as follows. The implicit part of the flux is
defined based on either upstream or central difference scheme, and the explicit component is the difference between
the high-order scheme employing Lagrange interpolation polynomials, and the explicit expression for nðiÞi je. Denoting
the nodal values of ni at N neighboring cell center points xi (or xk) by niðxiÞ, and using the Lagrange interpolating polyno-
mial of degree N � 1 which passes through these N points, the higher order flux at the cell face e is written as [50],
nðhÞi je ¼
XN

i¼1

niðxiÞ
YN

k¼1;–i

xe � xk

xi � xk
: ð19Þ

Provided the interpolation arrays are pre-computed once and prior to the simulation, significant improvements in spatial
and global accuracy for very modest additional CPU time overhead are possible.
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